Radiated seismic energy and earthquake source duration variations from teleseismic source time functions for shallow subduction zone thrust earthquakes
نویسندگان
چکیده
[1] Earthquake source time functions deconvolved from teleseismic broadband P wave recordings are used to examine rupture variations for 417 underthrusting earthquakes located on the interplate interface in circum-Pacific subduction zones. Moment-scaled duration of significant moment release varies with depth, with longer-duration events occurring in the shallowest 20 km of the megathrusts. The source time functions are also used to estimate radiated seismic energy. Two estimates are obtained: a simple scaled triangle substitution for the moment release history provides a minimum estimate, while integration of the time function shape provides an estimate limited only by the bandwidth of the teleseismic deconvolutions. While these energy calculations underestimate total energy, they enable systematic comparisons of rupture process within and between subduction zones. We do not find significant depth dependence for radiated energy overall, but some regions do show mild trends of increasing energy/seismic moment ratios (E/Mo) with increasing source depth that correspond to rupture duration variations in those regions. The observations of longer rupture duration at shallow depth with moderate E/Mo may be due to heterogeneous friction and structural features on the shallow plate interface.
منابع مشابه
New perspectives on self-similarity for shallow thrust earthquakes
Scaling of dynamic rupture processes from small to large earthquakes is critical to seismic hazard assessment. Large subduction earthquakes are typically remote, and we mostly rely on teleseismic body waves to extract information on their slip rate functions. We estimate the P wave source spectra of 942 thrust earthquakes of magnitude Mw 5.5 and above by carefully removing wave propagation effe...
متن کاملEffect of directivity on estimates of radiated seismic energy
[1] To accurately estimate the seismic energy radiated in an earthquake, it is important to use appropriate corrections for path and source effects. Using slip models obtained by inversion of seismic data, we examine the effect of directivity on estimates of radiated energy and develop a method to correct for this source effect. From our calculations we suggest that the directivity correction f...
متن کاملRupture characteristics of major and great (Mw≥7.0) megathrust earthquakes from 1990 to 2015: 2. Depth dependence
Depth-varying characteristics of high-frequency seismic radiation for megathrust earthquakes have been inferred from several recent giant earthquakes and large tsunami earthquakes. To quantify any depth dependence more extensively, we analyzed 114 Mw ≥ 7.0 thrust-faulting earthquakes with centroid depths from 5 to 55 km on circum-Pacific megathrusts using teleseismic body wave finite-fault inve...
متن کاملTHE SOURCE PARAMETERS OF THE SAN FERNANDO EARTHQUAKE INFERRED FROM TELESEISMIC BODY WAVES BY MAX WYss AND THOMAS
The accuracy of teleseismic estimates of moment, fault area, dislocation and stress drop was tested for the case of a thrust fault: the San Fernando, California, earthquake of Feburary 9, 1971. On the basis of P-wave spectra of 25 stations and S-wave spectra of 9 stations, the respective values were found to be 0.7.1026 dyne-cm, 570 km 2, 45 cm, and 14 bars. They agree well with the same parame...
متن کاملTeleseismic Time Functions for Large, Shallow Subduction Zone Earthquakes
Broadband vertical P-wave records are analyzed from 63 of the largest shallow subduction zone earthquakes which have occurred in the circum-Pacific in the last 45 yr. Most of the records studied come from a common instrument, the Pasadena, California, Benioff 1-90 seismometer. Propagation and instrument effects are deconvolved from the P-wave records using a damped least-squares inversion to ob...
متن کامل